Search results for "functional magnetic resonance imaging data"

showing 1 items of 1 documents

Applying fully tensorial ICA to fMRI data

2016

There are two aspects in functional magnetic resonance imaging (fMRI) data that make them awkward to analyse with traditional multivariate methods - high order and high dimension. The first of these refers to the tensorial nature of observations as array-valued elements instead of vectors. Although this can be circumvented by vectorizing the array, doing so simultaneously loses all the structural information in the original observations. The second aspect refers to the high dimensionality along each dimension making the concept of dimension reduction a valuable tool in the processing of fMRI data. Different methods of tensor dimension reduction are currently gaining popUlarity in literature…

computer.software_genre01 natural sciencesTask (project management)010104 statistics & probability03 medical and health sciences0302 clinical medicineDimension (vector space)medicinePreprocessorTensor0101 mathematicsMathematicsta112medicine.diagnostic_testbusiness.industryDimensionality reductionfMRIPattern recognitionIndependent component analysisdataPrincipal component analysisData miningArtificial intelligencefunctional magnetic resonance imaging databusinessFunctional magnetic resonance imagingcomputer030217 neurology & neurosurgery2016 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)
researchProduct